1. INTRODUCTION

The MCT-302 is a fully supervised, PowerCode magnetic contact transmitter. It features a built-in reed switch (that opens upon removal of a magnet placed near it) and an auxiliary hard-wired input, programmable as either N.C. or E.O.L., for use with additional sensors - pushbuttons, detectors, door contacts etc.

An on-board DIP switch allows the installer to disable the magnet-operated reed switch if only the auxiliary input is needed. The reed switch and the auxiliary input behave as separate transmitters, although they trigger the same RF module into transmission. Each input has a unique 24-bit PowerCode ID, selected in the factory from over 16 million possible code combinations.

Upon alarm, a digital message is transmitted, composed of the disturbed input’s PowerCode ID followed by various status and message-type markers. Alarm and other data are thus forwarded to the receiver.

Since messages transmitted by the MCT-302 might collide with transmissions from other PowerCode transmitters, a “smart” anti-collision transmission sequence is used.

The MCT-302 tamper switch is activated when the cover is removed. In a tamper situation, a message is transmitted from the reed switch input with the “tamper alert” marker ON. If the installer disables the reed switch, tamper is reported by the auxiliary input instead.

A periodic supervision message, distinguished by a specific marker, is transmitted automatically from the reed switch input only (if enabled) or from the auxiliary input only (if the reed switch is disabled) every 15 min. (Europe), 60 min. (USA), or according to local standards. The target receiver is thus informed, at regular intervals, of the unit’s active participation in the system.

An LED lights whenever alarm or tamper events are reported. The LED does not light while a supervision message is being transmitted. Operating power is obtained from an on-board 3.6 V Lithium Thionyl Chloride battery. A weak battery will cause a “low battery” marker to be added to any message transmitted.

2. SPECIFICATIONS

Frequency (MHz): 315, 433.92, 868.95 or other per local requirements (UL has only investigated at 315 MHz).

Transmitter’s ID Code: 24-bit digital word, over 16 million combinations, pulse width modulation.

Overall Message Length: 36 bits

Alarm Inputs: 2, one internal and one external, with a separate 24-bit transmitter ID each.

Auxiliary Input Circuit Type: N.C. / E.O.L., selected with DIP switch

E.O.L. Resistor Required: 47 kΩ

Message Repetition: Repetitive transmission (once every 3 minutes) or one-shot, as selected with on-board DIP switch.

Supervision: Signaling at 60-minute intervals or according to the local standard from the reed switch (if enabled) or from the aux. input (if the reed switch is disabled).

Response to Tamper Event: Tamper report every 3 minutes (until the tamper switch is restored).

Power Source: 3.6 V Lithium battery, size 1/2 AA, Tadiran.

Battery Life Expectancy: 3 years (for typical use)

Battery Supervision: Automatic transmission of battery condition data as part of any status report.

Operating Temperature: 0°C to 49°C (32°F to 120°F).

Dimensions: 81 x 22 x 23.5 mm (3-3/16 x 7/8 x 15/16 in.).

Weight: MCT-302 (excluding battery): 34 g (1.2 oz)

Magnet: 13 g (0.45 oz)

This device complies with Part 15 of the FCC Rules and RSS-210 of Industry and Science Canada. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

3. INSTALLATION

3.1 Mounting

It is highly recommended to attach the transmitter to the fixed frame and the magnet to the movable door (window), as shown in Figure 2. Make sure that the magnet is located not more than 6 mm (0.25 in.) from the transmitter’s marked side.

A. Remove the case closure screw (Figure 3).
B. Remove the unit’s cover as shown in Figure 4.
C. Flex out the circuit board retainer (Figures 1 and 5) and detach the circuit board from the base.
D. Hold the base against the mounting surface and mark the drilling points through the mounting holes (Figure 5).
E. Drill the holes and fix the base to the wall using the 2 screws with countersunk heads supplied in the package.
F. Mount the magnet near the marked side of the MCT-302.
G. Insert the edge of the P.C. board with the RF module into the edge supports, and press the other edge against the flexible retainer until it snaps home with a click.

CAUTION! Screws with other type or size of head may short circuit the bottom side of the printed circuit board.

Battery: 3.6 V Lithium Thionyl Chloride.

Transmitter ID Code: 24-bit digital word, over 16 million possible code combinations.
3.2 Auxiliary Input Wiring

Remember! If your application does not require the auxiliary input, be sure to set DIP switch SW2 to OFF, and to short the input terminals together with a piece of jumper wire.

- Connect the auxiliary detector’s alarm contacts across the MCT-302 auxiliary input terminals.

4. PREPARATION FOR USE

4.1 The Function Switches

A. Switch Tasks

The MCT-302 has a 4-position DIP switch function selector (Figure 7). Each switch lever allows you to select one of two options.

B. Setting the Switches

Set the function switches as desired prior to applying power. Use a ball point pen or another pointed object to shift the switch levers. The **ON** position is indicated by the arrow on the switch body.

Table 1. Getting acquainted with the function selector

<table>
<thead>
<tr>
<th>Sw-</th>
<th>Function</th>
<th>Pos.</th>
<th>Selected Option</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW1</td>
<td>Reed switch enable/disable</td>
<td>ON</td>
<td>Reed switch input is enabled</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF</td>
<td>Reed switch input is disabled</td>
<td>OFF</td>
</tr>
<tr>
<td>SW2</td>
<td>Aux. input type selector</td>
<td>ON</td>
<td>Aux. input is E.O.L. (47 kΩ)</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF</td>
<td>Aux. input is N.C.</td>
<td>OFF</td>
</tr>
<tr>
<td>SW3</td>
<td>Restore reports enable/disable</td>
<td>ON</td>
<td>Restore events reported</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF</td>
<td>Restore events not reported</td>
<td>OFF</td>
</tr>
<tr>
<td>SW4</td>
<td>Transmit mode selector</td>
<td>ON</td>
<td>Alarms reported every 3 min.</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF</td>
<td>Alarms reported only once</td>
<td>OFF</td>
</tr>
</tbody>
</table>

SWITCH SW1: Determines whether the reed switch input will be active or inactive.

Note: With **SW1** set to OFF, the reed switch input will not initiate periodic supervision transmissions.

SWITCH SW2: Determines whether the auxiliary input will behave as a 47kΩ end-of-line (E.O.L.) input or as a normally closed (N.C.) input.

SWITCH SW3: Determines whether the transmitter will report a restore event when an input restores from an alarm condition.

Note: Selecting the **ON** position enables you to find out whether the door or window under surveillance are open or closed.

SWITCH SW4: In non-supervised systems, it is sometimes required to report an alarm repeatedly at short intervals, until the disturbed input reverts to its normal (undisturbed) state. SW4 is used to select between repetitive and one-shot transmission.

Note: Transmissions initiated by “tamper” events will be repeated once every 3 minutes, regardless of SW4 setting.

When done, install the battery as directed in Para. 4.2.

4.2 Testing the Unit

Before testing, set DIP switches SW1 through SW4 as required for the particular application (Para. 4.1).

A. Insert the ½ AA battery between the battery clips, at the correct polarity. For proper operation, only Lithium Thionyl Chloride battery (Tadiran TL-5902 or equivalent) should be used.

B. Press the tamper switch once and release it.

Note: Since the cover is removed and power is applied, a tamper situation exists. Verify that the MCT-302 transmits (the LED lights briefly) once every 3 minutes.

C. When you are satisfied that tamper alerts are transmitted properly, put the cover on to return the tamper switch to its normal (undisturbed) position. Wait slightly over 3 minutes to verify that tamper transmissions cease. If all went well, secure the front cover to the base with the case closure screw.

D. Momentarily open the door or window and verify that the transmitter LED lights, indicating that transmission is in progress. If SW4 is **ON**, wait 3 minutes to verify that the transmission is repeated at 3-minute intervals.

E. Close the door or window, thus restoring it to the undisturbed state and watch the LED. If SW3 is set to **ON**, a “restore” transmission will now take place.

F. If the auxiliary input is used, momentarily activate the detector connected to it and check for a response similar to that described in D above. Then restore the input loop to its undisturbed state. The response should be as in E above.

G. Refer to the target receiver’s installation instructions, and let the receiver “learn” the ID codes associated with the reed switch (if used) and the auxiliary input (if used).

ATTENTION! Each input of the MCT-302 has a different ID. You must enroll the ID that you are using (if you are using the internal reed switch, activate the reed switch. If you are using the AUX input, trigger this input. If you are using both, activate the reed switch and then trigger the AUX input, or vice versa).

With the target receiver in the LEARN mode, an alarm transmission from each input will enroll the input’s ID in the receiver’s memory.

Note Regarding Tamper Message Transmission

- If the reed switch input is enabled (SW1 is **ON**), the tamper message will be sent with the reed switch’s ID.
- If the reed switch input is disabled (SW1 is **OFF**), the tamper message will be sent with the auxiliary input’s ID.

5. MISCELLANEOUS COMMENTS

Visonic Ltd. wireless systems are very reliable and are tested to high standards. However, due to low transmitting power and limited range (required by FCC and other regulatory authorities), there are some limitations to be considered:

- Receivers may be blocked by radio signals occurring on or near their operating frequencies, regardless of the digital code used.

- A receiver responds only to one transmitted signal at a time.

- Wireless devices should be tested regularly to determine whether there are sources of interference and to protect against faults.

The user is cautioned that changes or modifications to the unit, not expressly approved by Visonic Ltd., could void the user’s FCC or other authority to operate the equipment.