PowerManage 3.10

Requirements and Installation Guide
Contents

Contents ... 1

About this publication .. 1

Who should read this guide .. 1

Notices .. 1

Support ... 1

About PowerManage .. 1

Chapter 1 PowerManage requirements .. 1

Hardware requirements .. 2

- High performance system ... 2
 - HPE ProLiant DL380 Gen9 ... 2
- Medium performance system ... 3
 - HPE ProLiant DL380 Gen9 ... 3
- Low cost systems .. 4
 - Dell OptiPlex 3050 ... 4
 - Dell OptiPlex 3040 ... 4
- Virtual environment hardware requirements .. 5
- Legacy hardware requirements ... 5
- HAPproxy hardware requirements .. 6
 - High performance server .. 6
 - Medium performance server ... 6
- Rack and power outlet requirements ... 7

Network and firewall requirements .. 8

- Port number and IP address settings .. 8

Network diagrams .. 10

- Standalone configuration ... 10
- Two node multisite configuration .. 11
- Four node multisite configuration .. 11

Software requirements .. 12

- HPE Integrated Lights Out (iLO) ... 12

Client requirements ... 12

Chapter 2 PowerManage installation .. 13

Planning to install PowerManage .. 14

- Prerequisites .. 14
- Preparing the media ... 14
- Creating a PowerManage installation DVD .. 14
- Creating a PowerManage installation USB drive .. 14
 - Window system .. 14
 - Linux system ... 15
- Installing PowerManage .. 16
 - Installing on a HP server .. 16
 - Installing on a Dell server ... 18
 - Installing on VMware .. 19

Chapter 3 Post installation administration ... 33

Completing administration tasks .. 34
PowerManage console administration tasks .. 34
 Setting the date and time .. 34
 Configuring the network ... 34
 Configure the repository .. 35
 Installing patches ... 36
 Uninstalling patches ... 36
Backup and restore operations ... 36
 Backing up data to an FTP server ... 37
 Backing up data to an USB drive ... 37
 Restoring data from an FTP server .. 38
 Restoring data from a USB drive .. 39
Configuring for redundancy ... 40
 Configuring redundancy on a two node system .. 40
 Configuring after a failover event on a two node system ... 42
 Configuring redundancy on a four node system ... 44
 Configuring after a failover event on a four node system ... 45
 Master failover configuration ... 45
 Primary Slave failover configuration .. 47
SSL certification .. 48
 Creating a certificate request .. 48
Sending SMS notifications .. 49
 Prerequisites ... 49
 Defining the wake-up modem settings .. 49
 Adding a SMS broker ... 49
 Defining a request .. 50
 Defining a new SMS broker .. 52
Configuring HAProxy load balancing software .. 54
 Installing HAProxy ... 54
 Installing and configuring CentOS 7 ... 54
 Installing HAProxy software ... 54
About this publication

This publication contains information about the pre-installation requirements at a customer site before and during a Visonic PowerManage V3.10 Professional server installation and configuration.

The installation must be performed by a technical support engineer.

Who should read this guide

This publication must be read by the customer before the installation date. You must read the relevant sections in this document and verify to the Visonic point of contact that all the requirements are met before the installation date. A moderate level of server based knowledge and experience is assumed. This document does not cover in detail all of the installation features.

Notices

This document contains proprietary and confidential material of Visonic Ltd. Any unauthorized, reproduction, use or disclosure of this material, or any part thereof, is strictly prohibited. This document is solely for the use of Visonic employees and any authorized customers. Visonic Ltd. reserves the right to make changes in the specifications at any time and without notice.

© Copyright 2017
Under copyright laws, the contents of this manual may not be copied, photocopied, reproduced, translated or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of Tyco Security Products. All Rights Reserved.

Trademarks
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States, other countries, or both.

Support

EMAIL: info@visonic.com
INTERNET: www.visonic.com
About PowerManage

PowerManage is a web-based host application that can monitor and provision home security and automation services that are provided. The PowerManage application is built on open standard technologies and an open source Operating System (OS). Figure 1 shows a typical PowerManage system configuration with the server installed behind a firewall at a service provider’s customer site.

A typical network topology might include the following items:
- PowerMaster and PowerMaxPro alarm systems
- Firewall
- PowerManage server
- Automation software such as MAsterMind monitoring software

Figure 1: Network topology
Chapter 1

PowerManage requirements
Hardware requirements

Depending on the installation and the level of performance required you can choose one of the following servers for the installation of the PowerManage web-based host application.

PowerManage V3.10 can be installed on a HPE ProLiant Gen 7 for high to medium performance systems and Dell OptiPlex 3020 and above for low cost systems.

For customers purchasing new platforms we recommend the following hardware configurations.

High performance system

HPE ProLiant DL380 Gen9

Table 1: HPE ProLiant DL380 Gen9 E5-2650v3 2P 32GB-R P440ar 8SFF 2x10Gb 2x800W Perf Server

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form factor</td>
<td>2U rack server</td>
</tr>
<tr>
<td>Dimensions</td>
<td>17.54 in x 28.75 in x 3.44 cm</td>
</tr>
<tr>
<td>Processor</td>
<td>Intel® Xeon® E5-2650 v3 (40 core, 2.3 GHz, 25 MB, 105 W)</td>
</tr>
<tr>
<td>Memory</td>
<td>64 GB (4 x 16 GB) RDIMM</td>
</tr>
<tr>
<td>Storage controller</td>
<td>Dynamic Smart Array B140i and Smart Array P440ar/2GB FBWC</td>
</tr>
<tr>
<td>Hard drive</td>
<td>8 SFF Chassis, 440ar/2GB SAS controller</td>
</tr>
<tr>
<td>Power supply</td>
<td>(2) 800W Flex Slot Platinum hot plug power supply kit</td>
</tr>
<tr>
<td>iLO</td>
<td>Advanced</td>
</tr>
</tbody>
</table>

For details about the HP ProLiant see the Hewlett Packard Enterprise web site, DL380G9 [752689-B21].

A high performance system solution, supports the following capacity:

- GPRS and Broadband panels, receiver/resolve, with no user or installer applications:
 - 100K panels (50K GPRS panels plus 50K GPRS or broadband panels)
 - GPRS KA 600sec and BB KA 5sec
 - 80 events/second
 - 6 frames/second
 - Daily csv report for all panels, daily pdf report for one panel
 - 4000 RRIs per day

- GPRS and Broadband panels, receiver/resolve, with user or installer applications:
 - 100K panels (50K GPRS panels plus 50K GPRS or broadband panels) with GPRS KA 600sec and BBA KA 5sec
 - 60 events per second
 - 6 frames per second
Medium performance system

HPE ProLiant DL380 Gen9

Table 2: HP ProLiant DL380 Gen9 E5-2620v3 1P 16GB-R P440ar 8SFF 500W PS Base
Server hardware specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form factor</td>
<td>2U rack server</td>
</tr>
<tr>
<td>Dimensions</td>
<td>17.54 in x 26.75 in x 3.44 in</td>
</tr>
<tr>
<td>Processor x 2</td>
<td>Intel® Xeon® E5-2620 v3 (6 core, 2.4 GHz, 15MB, 85W)</td>
</tr>
<tr>
<td>Memory</td>
<td>16GB (1x16 GB) RDIMM</td>
</tr>
<tr>
<td>Storage controller</td>
<td>Dynamic Smart Array B140i & Smart Array P440ar/2GB FBWC</td>
</tr>
<tr>
<td>Hard drive</td>
<td>8 SFF Chassis, 440ar/2GB SAS controller</td>
</tr>
<tr>
<td>Power supply</td>
<td>HPE 500W Flex Slot Platinum Hot Plug Power Supply Kit</td>
</tr>
<tr>
<td>iLO</td>
<td>Advanced</td>
</tr>
</tbody>
</table>

For details about the HP ProLiant see the Hewlett Packard Enterprise web site, [DL380G9](https://www.hpe.com) [752687-B2]

A medium performance system solution, supports the following capacity:

- GPRS and Broadband panels, receiver/resolve, with no user or installer applications:
 - 40K panels (20K GPRS panels plus 20K GPRS or Broadband panels)
 - GPRS KA 600sec and Broadband KA 5sec
 - 30 events/second
 - 6 frames/second
 - Daily csv report for all panels, daily pdf report for one panel
 - 2000 RRI{e}s per day

- GPRS and Broadband panels, receiver/resolve, with user or installer applications:
 - 25K panels (15K GPRS panels plus 10K GPRS or Broadband panels)
 with GPRS KA 600sec and Broadband KA 5sec
 - 20 events per second
 - 6 frames per second
 - 5000 simultaneous interactive users with approximately 800 request per second
 - Daily csv report for all panels and daily pdf report for one panel
 - 2000 RRI{e}s per day
Low cost systems

Dell OptiPlex 3050

Table 3: Dell OptiPlex 3050 - Core i5 7500 3.4 GHz - 16 GB hardware specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (H x W x D)</td>
<td>15.4 cm x 27.4 cm x 35 cm</td>
</tr>
<tr>
<td>Processor</td>
<td>Intel® Core i5-7500 (QC, 6 MB, 4 T, 3.4 GHz, 65 W)</td>
</tr>
<tr>
<td>Memory</td>
<td>32 GB (maximum) - DDR4-SDRAM</td>
</tr>
<tr>
<td>Hard drive</td>
<td>1 x 500 GB - SATA</td>
</tr>
</tbody>
</table>

Dell OptiPlex 3040

Table 4: Dell OptiPlex 3040 - Core i5 6500 3.2 GHz - 16 GB hardware specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (H x W x D)</td>
<td>15.4 cm x 27.4 cm x 35 cm</td>
</tr>
<tr>
<td>Processor</td>
<td>1 x Intel® Core i5 (6th Gen) 6500 / 3.2 GHz (3.6 GHz) (Quad-Core)</td>
</tr>
<tr>
<td>Memory</td>
<td>16 GB (maximum) – DDR3L-SDRAM - non-ECC</td>
</tr>
<tr>
<td>Hard drive</td>
<td>1 x 500 GB - SATA</td>
</tr>
</tbody>
</table>

Table 5: Dell OptiPlex 3040 - Core i5 4570 3.2 GHz - 8 GB hardware specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (H x W x D)</td>
<td>15.4 cm x 27.4 cm x 35 cm</td>
</tr>
<tr>
<td>Processor</td>
<td>1 x Intel® Core i5 (6th Gen) 4750 / 3.2 GHz (3.6 GHz) (Quad-Core)</td>
</tr>
<tr>
<td>Memory</td>
<td>8 GB – DDR3L-SDRAM - non-ECC</td>
</tr>
<tr>
<td>Hard drive</td>
<td>1 x 500 GB - SATA</td>
</tr>
</tbody>
</table>

A low cost system solution, supports the following capacity:
- 10K GPRS panels with a KA of 600 seconds and 500 Broadband panels with a KA of 5 seconds
- 5 events/second
- 1 frame/second
- 500 interactive users with approximately 130 requests per second
Virtual environment hardware requirements

The following table describes the minimum hardware requirements to install PowerManage on a VMware vSphere client.

Table 6: vSphere client hardware specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>1 CPU</td>
</tr>
<tr>
<td>Processor</td>
<td>Intel® Xeon® E5-2650 v3 (40 core, 2.3 GHz, 25 MB, 105 W)</td>
</tr>
<tr>
<td>Memory</td>
<td>4 GB RAM</td>
</tr>
<tr>
<td>Hard drive</td>
<td>1 x 500 GB SATA</td>
</tr>
</tbody>
</table>

Legacy hardware requirements

The following tables describes the legacy hardware system that are supported.

Table 7: HP ProLiant DL360p G8 Server [670634-S01]

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form factor</td>
<td>1U rack server</td>
</tr>
<tr>
<td>Dimensions (H x W x D)</td>
<td>4.32 cm x 42.62 cm x 69.22 cm</td>
</tr>
<tr>
<td>Processor x 2</td>
<td>Intel® Xeon® E5-2640 (6 core, 2.5 GHz, 15 MB, 95 W)</td>
</tr>
<tr>
<td>Memory</td>
<td>16GB (2 x 8 GB DDR3-1333MHz Low Voltage RDIMMs)</td>
</tr>
<tr>
<td>Storage controller</td>
<td>Smart Array P420i and 1GB FBWC (RAID 0/1/1+0/5/5+0)</td>
</tr>
<tr>
<td>Hard drive</td>
<td>HP 2 x 600 GB SAS 10k 2,5” SFF</td>
</tr>
<tr>
<td>Power supply</td>
<td>(2) HP 460W CS Platinum plus Hot Plug Redundant Power Supply</td>
</tr>
<tr>
<td>iLO</td>
<td>Advanced</td>
</tr>
</tbody>
</table>

For details about the HP ProLiant see the Hewlett Packard Enterprise web site, DL360G8.

Table 8: HP ProLiant DL360p G8 High Performance Server [646904-001]

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form factor</td>
<td>1U rack server</td>
</tr>
<tr>
<td>Dimensions (H x W x D)</td>
<td>4.32 cm x 42.62 cm x 69.22 cm</td>
</tr>
<tr>
<td>Processor x 2</td>
<td>Intel® Xeon® E5-2650 (8 core, 2 GHz, 20 MB, 95 W)</td>
</tr>
<tr>
<td>Memory</td>
<td>32 GB (4 x 8 GB) Registered DIMMs PC3-12800R (1600MHz)</td>
</tr>
<tr>
<td>Storage controller</td>
<td>Smart Array P420i and 1GB FBWC (RAID 0/1/1+0/5/5+0/6/6+0)</td>
</tr>
<tr>
<td>Hard drive</td>
<td>HP 2 x 600 GB SAS 10k 2,5” SFF</td>
</tr>
<tr>
<td>Power supply</td>
<td>(2) HP 750W CS Platinum, plus Hot Plug Redundant Power Supply</td>
</tr>
<tr>
<td>iLO</td>
<td>Advanced</td>
</tr>
</tbody>
</table>

For details about the HP ProLiant see the Hewlett Packard Enterprise web site, DL360G8.
HAProxy hardware requirements

The following tables describe the hardware requirements for a proxy server if required for load balancing and high availability.

High performance server

Table 9: HP ProLiant DL360p G9 Server [670634-S01]

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form factor</td>
<td>1U rack server</td>
</tr>
<tr>
<td>Dimensions (H x W x D)</td>
<td>4.32 cm x 42.62 cm x 69.22 cm</td>
</tr>
<tr>
<td>Processor x 2</td>
<td>Intel® Xeon® E5-2640 v3 (6 core, 2.5 GHz, 15 MB, 85 W)</td>
</tr>
<tr>
<td>Memory</td>
<td>32 GB (4 x 8 GB) Registered DIMMs PC3-12800R (1600MHz)</td>
</tr>
<tr>
<td>Storage controller</td>
<td>Smart Array P420i and 1GB FBWC (RAID 0/1/1+0/5/5+0)</td>
</tr>
<tr>
<td>Hard drive</td>
<td>8 SFF Chassis, 440ar/2GB SAS controller</td>
</tr>
<tr>
<td>Power supply</td>
<td>(2) HP 460W CS Platinum plus Hot Plug Redundant Power Supply</td>
</tr>
<tr>
<td>iLO</td>
<td>Advanced</td>
</tr>
</tbody>
</table>

For details about the HP ProLiant see the Hewlett Packard Enterprise web site, DL360G9.

Medium performance server

Table 10: HP ProLiant DL360p G8 Server [670634-S01]

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form factor</td>
<td>1U rack server</td>
</tr>
<tr>
<td>Dimensions (H x W x D)</td>
<td>4.32 cm x 42.62 cm x 69.22 cm</td>
</tr>
<tr>
<td>Processor x 2</td>
<td>Intel® Xeon® E5-2640 (6 core, 2.5 GHz, 15 MB, 95 W)</td>
</tr>
<tr>
<td>Memory</td>
<td>16GB (1 x 16 GB) RDIMM</td>
</tr>
<tr>
<td>Storage controller</td>
<td>Smart Array P420i and 1GB FBWC (RAID 0/1/1+0/5/5+0)</td>
</tr>
<tr>
<td>Hard drive</td>
<td>HP 2 x 600 GB SAS 10k 2.5" SFF</td>
</tr>
<tr>
<td>Power supply</td>
<td>(2) HP 460W CS Platinum plus Hot Plug Redundant Power Supply</td>
</tr>
<tr>
<td>iLO</td>
<td>Advanced</td>
</tr>
</tbody>
</table>

For details about the HP ProLiant see the Hewlett Packard Enterprise web site, DL360G8.
Rack and power outlet requirements

You must ensure that the following rack and power requirements are met:

- Sufficient room in your designated server rack for a 1U sized server.
- One free power outlet must be present. A second power outlet is recommended as the server has two redundant power supplies. More outlets may be required depending on the server configuration, see the remaining document for details.
Network and firewall requirements

You must connect the PowerManage server behind a firewall or Network address translation (NAT) device and use a restrictive access policy.

Port number and IP address settings

You must configure the following network and firewall settings:

- **Network settings:**
 - Allocate one fixed static IP address.
 - A DNS host name is required for the allocated IP address. You must have an A and PTR record for this address.
 - A symmetric downlink an uplink connection of 10 to 100 Mbit is required at all times. This speed can vary with the system load.
 - The outbound server must have access to the Internet and cannot be blocked.

- **Firewall settings:**
 - Must support concurrent connections, the number of connections is based on connections/second = N/2, where N is the number of panels enrolled on the server.
 - Bandwidth for medium performance system must not be less than 10 Mbit/second both for incoming and outgoing traffic. For high performance must not be less than 100 Mbit/seconds.

Table 11 describes the required inbound communication ports that must be open on the internal firewall.

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel connections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5001</td>
<td>TCP/UDP</td>
<td>Alarm signals and resolve</td>
</tr>
<tr>
<td>8080</td>
<td>TCP/UDP</td>
<td>Alarm images</td>
</tr>
<tr>
<td>8443</td>
<td>TCP/UDP</td>
<td>Alarm images secured</td>
</tr>
<tr>
<td>5555</td>
<td>TCP/UDP</td>
<td>Offline handler [For GEO redundancy architecture only]</td>
</tr>
</tbody>
</table>

Web interface		
80	HTTP	Resolve web interface
443	HTTPS	Resolve web interface using encrypted SSL

REST API		
443	HTTPS	REST API requests with encrypted SSL
3333	HTTP	REST API requests that are not encrypted if using a HAProxy server

| VDCP API | | |
| 4444 (configurable) | V-DCP | Script access |

Support
<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>TCP</td>
<td>SSH only for 91.207.90.0/23</td>
</tr>
<tr>
<td>161</td>
<td>SNMP</td>
<td>Nagios or other monitoring platforms</td>
</tr>
<tr>
<td>162</td>
<td>SNMP</td>
<td>Nagios or other monitoring platforms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extended support (iLO)</td>
</tr>
<tr>
<td>443</td>
<td>HTTPS</td>
<td>iLO web interface</td>
</tr>
<tr>
<td>17990</td>
<td>TCP/UDP</td>
<td>iLO</td>
</tr>
<tr>
<td>17988</td>
<td>TCP/UDP</td>
<td>iLO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Messaging</td>
</tr>
<tr>
<td>25</td>
<td>SMTP</td>
<td>Email or email relay</td>
</tr>
<tr>
<td>465</td>
<td>SMTP</td>
<td>Email or email relay</td>
</tr>
<tr>
<td>587</td>
<td>SMTP</td>
<td>Email or email relay</td>
</tr>
</tbody>
</table>
Network diagrams

The following network diagrams are examples of PowerManage configuration solutions that can be deployed.

The HAProxy server is optional in all configurations. If no HAProxy server is present, you can redirect all SSL traffic https://app_dns from the firewall to the Power Manage server and remove HAProxy server from the schema.

Standalone configuration

Figure -1 PowerManage standalone configuration
Two node multisite configuration

In a two node configuration the PowerManage server installed at the primary site is replicated on a second PowerManage server installed at a secondary site.

![PowerManage two node multisite configuration](image)

Figure -2 PowerManage two node multisite configuration

Four node multisite configuration

In a four node configuration PowerManage is installed at the primary site and at the secondary site a primary slave manager is configured.

![PowerManage four node multisite configuration](image)

Figure -3 PowerManage four node multisite configuration
Software requirements

HPE Integrated Lights Out (iLO)

The HPE iLO software allows you to manage and monitor servers from a remote machine. The enhanced access and server control provides easier server administration. For further information HPE iLO, see the Hewlett Packard Enterprise website at:

The iLo interface uses a separate Ethernet port and requires a separate IP address.

Client requirements

The iLo client is used for web and MMI interface access.

Suggested minimum hardware requirements:

- Processor : Intel or AMD processor with two or more logical cores, each with a speed of 2GHz.
- Memory: 4GB RAM.
- Networking: 1Gbit Ethernet connectivity.

Suggested minimum software requirements:

- Operating system:
 - Windows 10, Windows 7, Windows Vista, and Windows XP.
 - Red Hat Linux, Ubuntu Linux, and Fedora.
 - Mac OS
- Browsers:
 - Google Chrome 22+
 - Firefox 6+
 - Safari S5+
 - Internet Explorer 9+ (limited support)
- SSH agent:
 - PuTTy
 - OpenSSH agent
 - SSH agent for Mac
Chapter 2
PowerManage installation
Planning to install PowerManage

Prepare the installation media by creating a PowerManage DVD or USB flash drive.

Prerequisites

A local network engineer or administrator must be available at the time of the installation and ensure that the following equipment is on site:

- USB keyboard
- Console or monitor
- Security panels for testing
- Mobile device for testing

Preparing the media

The PowerManage application is installed from an ISO image file. The file size exceeds 4 GB, you can store the image file on one of the following media types:

- Double layer DVD
- USB flash drive

Creating a PowerManage installation DVD

Use any disk burning software that is capable of burning a disc using an image file. The process is the same for Windows or Linux operating systems.

To burn a disc using an image file, complete the following steps:

1. Place a blank, writeable double layered DVD disc into your computer’s DVD drive.
2. Start the disc burning program and select the option to burn a DVD from an image file.
4. Click **Burn disc image**.

Creating a PowerManage installation USB drive

Several utilities are available for Windows and Linux to create a USB drive.

Window system

To create a PowerManage bootable installation USB drive using the Rufus utility, complete the following steps:

1. Start the Rufus utility and from the **Device** list, select the USB drive.
2. In the **New volume label** field, enter the name for the PowerManage USB drive.
3. In the Format Options area, select Create a bootable disk using: ISO image and then click the CD-ROM icon and select the PowerManage ISO image file.

4. Click Start a confirmation message is displayed, click Write in DD Image mode.

Linux system

To create a PowerManage bootable installation USB drive use the Linux dd command. The dd command requires you to specify the device file that corresponds to the physical media. The name of the device file matches the name assigned to the device by your system. All device files are in the directory /dev/.

To write an image file to a bootable media, complete the following steps:

1. Insert the USB media.
2. Format the USB drive.
3. Open a new terminal window, as sudo user and type the following command to find the USB device:

 `fdisk -l`

4. Go to the directory where the PowerManage ISO image is stored and type the following command

 `dd bs=1M if=<image.iso> of=/dev/<device>`

 where <image.iso> is the name of the PowerManage ISO image and <device> is the name of the current device file for the media.
Installing PowerManage

Install the PowerManage application on a server or virtual machine. Depending on the server type the installation process varies.

Installing on a HP server

Complete the following steps to install the PowerManage application on a HP server.
1. Power on the server and insert the PowerManage DVD into the DVD drive or insert the USB drive.
2. Power off and on the server.
3. When the startup screen appears, press F11 to go to the Boot Menu.
4. Select Legacy BIOS One-Time Boot Menu and press enter.
5. When the boot menu confirmation message to enter the Legacy BIOS One Time Boot Menu appears, press enter.

Figure -1 Legacy BIOS One-Time Boot Menu
6. Depending on the installation media, select one of the following options:
 - One Time Boot to CD-ROM (DVD Media installation)
 - One Time Boot to USB DriveKey (USB Media installation)
7. Wait until the installation starts, when the **Tyco – PowerManage III Master Disk** boot prompt appears, type one of the following boot options:

- `usb` (USB Media installation)
- `cdrom` (DVD Media installation)

8. Wait until the installation is complete and the server restarts.

Note: Remove the DVD or the USB after the reboot process.
9. At the `localhost login:` prompt,
 - Enter the user ID: `root`
 - Enter the password: `visonic`

10. At the `New password:` prompt, enter the new root password twice.

 Note: It is recommended not to use the default password.

 Result: The PowerManage Man Machine Interface (MMI) appears.

Installing on a Dell server

The PowerManage installation from a DVD is exactly the same as described for the HP server. To install from a USB drive, two identical USB drivers with the same PowerManage images are required.

Complete the following steps to install the PowerManage application on a Dell server.

1. Power on the server, insert the PowerManage DVD into the DVD drive or insert two USB drives.
2. Reboot the server.
3. When the startup screen appears, press **F12** to go to the **One-Time Boot Menu**.
4. From the **One-Time Boot Menu** depending on the media type select one of the following options:
 - One Time Boot to CD-ROM (DVD Media installation)
 - One Time Boot to USB DriveKey (USB Media installation)
5. See Installing on a HP server and complete steps 7 to 10.
Installing on VMware

Complete the following steps to install the PowerManage application on a VMware virtual machine:

1. Log on to VMware vSphere client.

![VMware vSphere Client](image1)

Figure -4 VMware vSphere Client

2. Select the host virtual machine.

![Host selection](image2)

Figure -5 Host selection
3. To add a new adapter complete the following steps:
 - Click the **Configuration** tab (action 1).
 - In the Hardware pane, select **Networking** (action 2)
 - Click **Add Networking** (action 3)

4. On the Connection Type page, click **Virtual Machine** and then click **Next**.

Figure -6 Configuration window

Figure -7 Add Network Wizard – Connection Type page
5. On the Virtual Machines – Network Access page, select the required Ethernet adapter and then click **Next**.

![Network Access page](image)

Figure -8 Network Access page

6. On the Virtual Machines – Connection Settings page, in the **Network Label** field enter the name of the adapter and then click **Next**.

![Connection Settings page](image)

Figure -9 Connection Settings page
7. On the Summary page, review the settings and click **Finish**.

![Figure -10 Summary page](image)

8. To upload the PowerManage image file to the VM datastore complete the following steps:
 - Select the host virtual machine (action 1).
 - Click the **Configuration** tab (action 2).
 - In the Hardware pane, select **Storage** (action 3).

![Action 1](image)

![Action 2](image)

![Action 3](image)

![Figure -11 Configuration window](image)
9. In the Datastores pane, right-click the datastore and select **Browse Datastore…**

![Figure -12 Datastores pane](image1)

10. Click the **Upload files to this storage** icon, select **Upload File...** and then select the file to add from the workstation.

![Figure -13 Datastore Browser window](image2)
11. Right-click the host virtual machine name, and then click **New Virtual Machine...** on the shortcut menu.

12. On the Configuration page, click **Typical** and then click **Next**.
13. On the Name and Location page, in the **Name** field enter the virtual machine name and then click **Next**.

![Figure -16 Name and Location page](image)

14. On the Storage page, select a destination storage for the new virtual machines files and then click **Next**.

![Figure -17 Storage page](image)
15. On the Guest Operating System page:
 - Click Linux.
 - In the Version list, select Red Hat Enterprise Linux 6 (64-bit) and then click Next.

![Figure -18 Guest Operating System page](image)

16. On the Network page, select the network and adapter that you have configured:
 - From the Network list, select the network connection name.
 - From the Adapter list, select the adapter name and then click Next.

![Figure -19 Network page](image)
17. On the Create a Disk page:
 - In the Virtual disk size box, select the disk size and measurement type that you want to use.
 Note: This value cannot be less than 120 GB.
 - Click Thick Provision Lazy Zeroed and then click Next.

18. On the Ready to Complete page, review the settings and click Finish.
19. Right-click the new virtual machine name, and then click **Edit Settings...** on the shortcut menu.

![Virtual machine configuration](image1)

Figure -22 Virtual machine configuration

20. Ensure that the Hardware tab is selected and complete the remaining steps.

21. On the hardware list, click **Memory**. In the Memory Configuration pane, select the size and measurement of the memory size.

Note: A minimum of 4 GB is required.

![Virtual machine memory configuration](image2)

Figure -23 Virtual machine memory configuration
22. On the hardware list, click **CPUs** and select the number of CPUs at least one or more is required.

![Figure -24 Virtual machine CPU configuration](image)

23. On the hardware list, click **SDSI controller 0**, click **Change Type....**

Then from the **SCSI Controller Type** list, click **LSI Logic Parallel**.

![Figure -25 Virtual machine SCSI Controller configuration](image)
24. On the hardware list, click **Network adapter 1**, then from the **Network Connection** list, select the name of the new network connection.

25. On the hardware list, click **CD/DVD drive 1**:

- In the Device Status area, click **Connect at power on**.
- In the Device Type area, click **Datastore ISO File** and then click **Browse**.

 Go to the datastore where the PowerManage ISO file is located and select the image.
26. Open the virtual machine and connect to the ISO image on the datastore.

![Figure -28 ISO file connection on the datastore]

27. Start the virtual machine and type `cdrom` at the boot prompt to install the PowerManage application.

![TYCO — PowerManage III Master Disk
Version 3.10.3
Red Hat Enterprise Linux

Enter installation type.

cdrom — PowerManage Installation from optical media (CD-ROM)
usb — PowerManage installation from USB flash stick
local — Exit installation and boot from local media

No bootpress for 60 seconds will return to BIOS to continue boot.
Remember to eject the installation media upon completion.

boot: _]
Chapter 3
Post installation administration
Completing administration tasks

After the PowerManage application is installed on the server it is ready for use. However, other administrative tasks not covered during the installation can be necessary depending on your system configuration.

PowerManage console administration tasks

Tasks such as time synchronization, network and repository configuration are performed from the PowerManage console referred to as the MMI console. Log on to the PowerManage console with user ID root and password to complete the following tasks.

Setting the date and time

To set the date and time, complete the following steps from the MMI console menu:

1. On the MMI menu, go to System Configuration > Date/Time settings.
2. Ensure that the correct time zone is selected and verify that Sync with Network Time Protocol (NTP) is enabled.

Configuring the network

To configure the network, complete the following steps from the MMI console menu:

1. On the MMI menu, go to System Configuration > Network settings.
2. In the network configuration pane, in the Host name field, enter the host name of the server.
3. In the Primary DNS field, enter the DNS number and if required enter the DNS number for the Secondary and Tertiary DNS.
4. Complete one of the following steps:
 - If the server IP address is configured using DHCP, enable the eth<x> dhcp on/off parameter, where x represents the number of the interface. The enabled field is marked with an X.
• If the server is configured with a static IP address:
 a. Disable the `eth<x> dhcp on/off` parameter, where x is the number of the interface. The disabled field is left blank.
 b. In the `eth<x> IP address`, `eth<x> netmask`, and `eth<x> gateway` fields, type the required values.

5. Select **Apply changes**.

Figure -2 MMI console – Network configuration settings with eth0 selected

Configure the repository

To configure the repository, complete the following steps from the MMI console:

1. On the MMI menu, go to **Maintenance >Repository configuration**.
2. In the repository configuration pane, in the **Server** field, enter the repository IP address.
3. In the **User** field, enter the repository account user name.
4. In the **Password** field, enter the corresponding repository account password.
5. Select **Apply changes**.

![Figure -3 MMI console – Repository configuration settings](image-url)
Installing patches

PowerManage maintenance updates, which are referred to as patches, bring the server up to the current maintenance software level. You can apply and remove applied patches from the MMI console.

To apply a patch first ensure that you have the repository setting configured on the server.

To install a patch file, complete the following steps from the MMI console:

1. On the MMI menu, go to **Maintenance > Upgrade patches**.
2. In the patches applying configuration pane, in the **Available patches** field, select the required patch file and select **Apply patch**.

After the patch is installed, the name appears in the **Installed patches** field.

Note: To apply multiple patches, you must apply the patches in sequential order. For example, to install `3.6.25.1.tar.gz` and `3.6.25.2.tar.gz`, first install `3.6.25.1.tar.gz` and only after the patch is installed can you install the next patch `3.6.25.2.tar.gz`.

![Figure -4 MMI console – Installing patches](image)

Uninstalling patches

To uninstall a patch, complete the following steps from the MMI console:

1. On the MMI menu, go to **Maintenance > Upgrade patches**.
2. In the patches applying configuration pane, in the **Installed patches** field, select the required patch file and select **Revert patch**.

Note: To uninstall multiple patches, you must remove the patches in the reverse order that they were installed.

Backup and restore operations

There are two methods to backup PowerManage data, you can backup data to an FTP server or backup data to a USB drive. Depending on the backup method, you can restore PowerManage data to the server from an FTP server or from a USB drive.
Backing up data to an FTP server

To backup PowerManage data to an FTP server, complete the following steps from the MMI console:

1. On the MMI menu, go to **Maintenance > Backup/Restore > FTP settings**.
2. In the FTP manager pane, complete the following steps:
 - In the FTP IP address field, enter the FTP IP address of the server.
 - In the FTP user field, enter the FTP user name to log on to the server.
 - In the FTP password field, enter the corresponding FTP user password.
3. Select **Save changes**.
4. On the MMI menu, go to **Maintenance > Backup/Restore > Backup**.
5. In the **Backup method** field, select **FTP backup**.
6. In the **Backup variants** field, select the data to include in the backup.
7. In the **Path with name to store on FTP** field, enter the absolute path location to store the backup file and include the file name.

 Note: Select **List dir**, to see a list of backup files that are currently stored in this directory.
8. Select **FTP backup**.
9. A status report is displayed, after the backup is finished, press the **Esc** key on the keyboard to exit the backup mode.

![Figure - 5 MMI console – FTP backup](image)

Backing up data to an USB drive

To backup PowerManage data to a USB drive, complete the following steps from the MMI console:

1. Connect the USB drive to the server.
2. On the MMI menu, go to **Maintenance > Backup/Restore > Backup**.
3. In the **Backup method** field, select **USB backup**.
4. In the **Backup variants** field, select the data to include in the backup.
5. Select **Check devices** to list available devices and then select the connected USB drive.

6. In the **Path with name to store on USB** field, enter the absolute path to the backup destination and include the file name.

 Note: Select **List dir**, to see a list of backup files that are currently stored in this directory.

7. Select **USB backup**.

![Figure -6 MMI console – USB backup](image)

Restoring data from an FTP server

To restore PowerManage backup data from an FTP server, complete the following steps from the MMI console:

1. On the MMI menu, go to **Maintenance >Backup/Restore >FTP settings**.

2. In the FTP manager pane, complete the following steps:
 - In the FTP IP address field, enter the FTP IP address of the server.
 - In the FTP user field, enter the FTP user name to log on to the server.
 - In the FTP password field, enter the corresponding FTP user password.

3. Select **Save changes**.

4. On the MMI menu, go to **Maintenance >Backup/Restore >Restore**.

5. In the **Restore method** field, select **FTP restore**.

6. In the **Path to restore from FTP** field, enter the absolute path to the directory where the backup file is located.

 Note: Select **List dir**, to see a list of backup files that are currently stored in this directory.

7. In the **Files list** field, select the file to restore and press the **Enter** key on the keyboard.
8. Select **FTP restore**.

![Figure -7 MMI console – Restore from FTP server](image)

Restoring data from a USB drive

To restore PowerManage data from a USB drive, complete the following steps from the MMI console:

1. Connect the USB drive to the server.
2. On the MMI menu, go to **Maintenance >Backup/Restore > Restore**.
3. In the **Restore method** field, select **USB restore**.
4. Select **Check devices** field.
5. In the **Restore from device** field, select the USB connected in step 1.
6. In the **Path to store on USB** field, enter the absolute path to the directory where the backup file is located.

 Note: Select **List dir**, to see a list of backup files that are currently stored in this directory.

7. In the **File list** field, select the required file and press the **Enter** key on the keyboard.
8. Select **USB restore**.

![Figure -8 MMI console – Restore from USB device](image)
Configuring for redundancy

Geographical (Geo) redundancy is a remote copy operation between two PowerManage servers at different geographical locations or sites.

You set up a relationship between the two servers, where one server is configured as the primary or master server and the other as the secondary or slave server. Updates on the primary server are synchronized on the secondary server.

Configuring redundancy on a two node system

To configure redundancy for a two node system, complete the following steps:

1. Install servers, see chapter 2 for details.
2. After the installation configure the Central Stations for Master and Slave roles.
3. Log on to the PowerManage MMI console with user ID root and password on the primary server (master).
4. On the MMI menu, go to System Configuration > Redundancy settings > GeoRedundancy.
5. In the GeoRedundancy configuration pane, select Enable Geo Redundancy.
6. Select Apply, a confirmation dialog box is displayed click Apply again.
7. You must wait until the redundancy is enabled. When enabled the mode is Master and displays the Master IP address.
8. Select **Show status** to view the redundancy status and enrolled slaves.

![Figure 10: MMI console – Geo Redundancy status](image)

Figure 10 MMI console – Geo Redundancy status

9. On the second server (slave), start the MMI console.

10. Before adding the slave role, verify that **Sync with Network Time Protocol (NTP)** is enabled on both the Slave and Master servers. See Chapter 3, Setting the date and time for details.

11. On the MMI menu, go to **System Configuration > Redundancy settings > GeoRedundancy Enrolment** and select **Allow enrol this server as slave**. **Note:** If not enabled and if the time difference between the master and slave is greater than 10 seconds, the redundancy fails to be created.

![Figure 11: MMI console – Geo Redundancy enrol status](image)

Figure 11 MMI console – Geo Redundancy enrol status

12. Select **Apply**, a confirmation dialog box is displayed select **Apply** again.
13. On the primary servers MMI console menu, go to **System Configuration > Redundancy Settings > GEO Redundancy > GEO nodes > Add GEO slave.**

- In the Slave IP address field, enter the IP address of the secondary server.
- In the Slave password field, enter the SSH password that was configured after the installation.

![MMI console – Geo Redundancy enrol status](image)

14. Select **Apply**, a confirmation dialog box is displayed select **Apply** again.

15. You must wait until the slave is added. When added the redundancy configuration is completed.

16. To see the status of the slave from the primary MMI console menu, go to **System Configuration > Redundancy Settings > GEO Redundancy > GEO nodes** and select **Get slave status**.

Configuring after a failover event on a two node system

When a failover occurs on the primary server, you must reverse the master and slave roles on the servers.

In the event that the primary server fails, complete the following steps:

1. Log on to the primary servers (master) MMI console.
2. On the MMI menu, go to **System Configuration > Redundancy Settings > GEO Redundancy** and deselect **Enable Geo Redundancy** and select **Apply**.
3. Exit the MMI console and log on again.
4. Log on to the secondary servers (slave) MMI console.
5. On the MMI menu, go to **System Configuration > Redundancy Settings > GEO Redundancy** and deselect **Enable Geo Redundancy** and select **Apply**.

![Figure -13 MMI console – Disable Geo Redundancy](image)

6. You must wait until the redundancy is disabled. When disabled the following message is displayed:

```
Important
You should re-establish MMI session to continue.
Press “Exit” and log in again.
<OK>
```

7. Select **OK**. Exit the MMI console and log on again.

8. On the MMI menu, go to **System Configuration > Redundancy Settings > GEO Redundancy** and select **Enable Geo Redundancy**.

9. Select **Apply**. A confirmation dialog box is displayed, select **Apply** again.

10. You must wait until the redundancy is enabled.

11. Start the former primary servers (master) MMI console.

 Note: As a result of the failover the former master is now configured as the slave.

12. On the MMI menu, go to **System Configuration > Redundancy Settings > GEO Redundancy Enrolment** and select **Allow enrol this server as slaves**.

13. Select **Apply**, a confirmation dialog box is displayed select **Apply** again.

14. Open the new masters MMI console.

15. On the MMI menu, go to **System Configuration > Redundancy Settings > GEO nodes**.

 - In the **Slave IP address** field, enter the IP address of the former master.
 - In the **Slave password** field, enter the SSH password of the former master.
16. Select **Apply**, a confirmation dialog box is displayed select **Apply** again.
17. You must wait until the slave is added.

Configuring redundancy on a four node system

Geographical (Geo) redundancy using a four node system, allows you to add as many slave systems as required. You must configure a Master server at one Geo site and at a second site you must configure a Primary slave role, all other servers can be configured as slave roles.

In the same way as a two node redundancy configuration, the HAProxy server checks which node is the master and redirects REST requests to this node automatically. If no HAProxy server exists, traffic from https://aps_dns must be redirected to the Master node on the firewall.

In the event of a Master Failover, similar to the case of a two node redundancy configuration, the Primary Slave is reconfigured as the Master and a new Primary slave is configured. The primary slave is configured from the MMI console in **System Configuration > Redundancy Settings > GEO Redundancy > GEO nodes > Secondary Node**.

To configure redundancy for a four node system, complete the following steps:

1. Install servers, see chapter 2 for details.
2. After the installation configure the Central Stations for Master and all Slave roles.
3. Log on to the PowerManage MMI console with user ID **root** and password on the primary server (master).
4. On the MMI menu, go to **System Configuration > Redundancy settings > GeoRedundancy**.
5. In the GeoRedundancy configuration pane, select **Enable Geo Redundancy**.
6. Select **Apply**, a confirmation dialog box is displayed select **Apply** again.
7. You must wait until the redundancy is enabled. When enabled the mode shows Master and the Maser IP address is displayed. To view the redundancy status and enrolled slaves, select **Show status**.
8. For each server designated as a slave, complete steps 9 to 10.
9. Start the MMI console and on the MMI menu, go to **System Configuration > Redundancy settings > GeoRedundancy Enrolment** and select **Allow enrol this server as slave**.
10. Select **Apply**, a confirmation dialog box is displayed click **Apply** again.
11. On the masters MMI console, on the MMI menu, go to **System Configuration > Redundancy Settings > GEO Redundancy > GEO nodes > Add GEO slave**.

 Note: Before adding the slave role, verify that **Sync with Network Time Protocol (NTP)** is enabled on every Slave and Master servers. See Chapter 3, Setting the date and time for details.
12. For each slave node add the IP address and SSH password.
13. To verify that all slaves are added from MMI menu go to System Configuration > Redundancy settings > GeoRedundancy

![Image of MMI console showing System Configuration and GeoRedundancy settings]

Figure -14 MMI console – Master and slave configuration

14. After enrolling more than one slave, the option Secondary Node appears in the menu. Go to System Configuration > Redundancy settings > GeoRedundancy > Geo nodes > Secondary Node to assign a primary slave manually.

Note: By default, the first slave enrolled on the master is the primary slave.

Configuring after a failover event on a four node system

Depending on if the Master or Primary Slave fails different actions are required.

Master failover configuration

In the event that the master fails, you must decide on which server will become the new master server. It can be any of the other servers, for example a primary slave server from the remote site or usually a slave from the same site.

After you manually reconfigure the system, you must change the client firewall and redirect all traffic to the new Master and the primary slave at the remote site if changed. It is recommended to configure the new master on the same site, otherwise it can be difficult to redirect the traffic from the failed server to the new one. Configuring at the same site, has the advantage of requiring less manual actions and there is no requirement to switch the IP receivers for the panels.

In the event that the primary server fails, complete the following steps:

1. Log on to the primary slave server MMI console. On the MMI menu, go to System Configuration > Redundancy settings > GeoRedundancy and deselect Enable Geo Redundancy and select Apply.

2. Exit the MMI console and log on again.
3. For each slave and former master, on the MMI menu, go to System Configuration > Redundancy settings > GeoRedundancy and deselect Enable Geo Redundancy and select Apply.

4. You must wait until the redundancy is disabled.

5. Select OK. Exit the MMI console and log on again to each server.

6. In the primary slave MMI menu go to System Configuration > Redundancy settings > GeoRedundancy and select Enable Geo Redundancy.

7. Select Apply, a confirmation dialog box is displayed select Apply again.

8. You must wait until the redundancy is enabled.

9. For each slave and former master server, complete steps 10 to 11.

10. Start the MMI console and on the MMI menu, go to System Configuration > Redundancy settings > GeoRedundancy Enrolment and select Allow enrol this server as slave.

11. Select Apply, a confirmation dialog box is displayed click Apply again.

12. Start the new master MMI console, on the MMI menu, go to System Configuration > Redundancy Settings > GEO Redundancy > GEO nodes > Add GEO slave.

13. For each slave node add the IP address and SSH password of the former Master.

14. Select Apply, a confirmation dialog box is displayed select Apply again.

15. Wait until the slave is added.
Primary Slave failover configuration

In the event that the primary slave fails, you must reconfigure the new Primary slave on the Master sever.

In the event that the primary slave fails, complete the following steps:

1. Log on to the primary servers (master) MMI console.
2. On the MMI menu, go to **System Configuration > Redundancy settings > GeoRedundancy > GEO nodes > Secondary Node.**
3. In the **Select IP of Secondary node** field, select the new IP address of the new primary slave.

Note: All traffic must be redirected to the new primary slave. It is recommended to select the primary slave on the same site as the one that failed, otherwise problems can be encountered redirecting traffic from the failed node to the new one.

![Figure -16 MMI console – Secondary node selection](image-url)
SSL certification

PowerManage V 3.4.9 and later support HTTPS secure communication. To use this secure communication, you must purchase and install an SSL certificate on the PowerManage server.

Creating a certificate request

To prepare a certificate or SSL request, complete the following steps:

1. Submit a request to the IT department or Internet Service Provider (ISP) to register the PowerMaster server host name for example, marketing.visonic.com.
2. Create a file and record the following default values:
 - A passphrase or password that is used for encryption. It is best to use a combination of numbers and letters (english alphabet). You can use lowercase letters, uppercase letters or both. The use of special characters is not supported.
 - A two letter country code, for example, UK.
 - A state or province name. If not applicable you can use the country name.
 - A locality name (region, city), for example, London.
 - An organization name, for example, Visonic.
 - Optional: organizational unit name (section or department).
 - Common name, such as company name or the host name of the server, for example, marketing.visonic.com.
 - Optional: email address.
3. Send the host name of the PowerManage server and the file from step 2 to Visonic. Visonic generates a self-signed certificate request and returns a public.csr file and a private.key file.
4. Send the public.csr file and the applicable payment to the certificate authority (CA). The CA returns the signed certificate, such as *.crt file.
5. Send the signed, validated certificate to Visonic and include the original CA email.
6. Visonic uploads the certificate to the repository, which adds HTTPS support to the PowerManage server.
 Note: The certificate consists of a .csr and .key file, which contains critical security parameters. The .csr file is derived from the .key file. Therefore, you must keep both files together.
 Ensure that you keep track of the certification expiration and renewal date.
Sending SMS notifications

In order to send SMS notifications you must configure the settings for the SMS broker that you are using. PowerManage is preconfigured for Orange, Cellsynt, TextAnywhere SMS brokers. Also you can configure the modems wake-up settings.

Prerequisites

The GSM modem is connected to the servers configured serial port.

Defining the wake-up modem settings

PowerManage can initiate communications with control panels by sending wake up messages.

To configure the modem settings, complete the following steps:
1. Log on to the PowerManage MMI console. On the MMI menu, go to Application configuration > Common > SMS Brokers > Add a new broker.
2. In the SMS Brokers types field, select Modem.
3. In the SMS Broker name field, type the name of the modem.
4. In the Serial ports field, select the port to which the modem is connected.
5. In the SMS Broker description, type a description or any additional comments.
6. Select Add broker.

Result: The modem is added to SMS Brokers list.

Adding a SMS broker

PowerManage is preconfigured for Orange, Cellsynt, TextAnywhere SMS brokers. To use any of these brokers complete the following steps:
1. Log on to the PowerManage MMI console. On the MMI menu, go to Application configuration > Common > SMS Brokers.
2. Select the required broker from the menu list.
3. In the SMS Brokers sender field, type the broker’s phone number. This number is indicated to the client as the source sender’s number for any SMS messages sent by the server.
4. In the SMS Broker login and SMS Broker password fields, type the user name and password respectively.
5. Select Add broker.

Defining a request

To use a broker other than the preconfigured brokers, you must create an http request that is used to send SMS messages. You must place this request in the brokers configuration file and store the request in the Template of GET/POST request to send sms field.

This request syntax can be obtained from the brokers API documentation. There are several parameters but most requests used are generated by PowerManage and can be used as variables inside the request.

To see a list of the PowerManage variables, from the MMI menu, go to Application configuration > Common > SMS Brokers > Add a new broker. The variables are listed in the Template of GET/POST request to send sms field.

The following list shows the PowerManage variables:

- **${CONTENT_LENGTH}** - size of POST request body. It’s counted automatically
- **${ID}** - auto-incremented field
- **${UUID}** - auto-generated field that is usually used as message ID
- **${DESTINATION_ID}** - SMS recipient number
- **${TEXT}** - message text

When any of the above parameters are used in a request, you just need to store its variable name.

For example, an instance message text is passed into at request as `text=${TEXT}` or `<message>${TEXT}</message>` depending on the brokers API.
The following example shows the text to enter in the **Template of GET/POST request to send sms** field when defining a new broker's configuration file.

Request for outgoing message is:

```
```

For the message broker enter the following text into **Template of GET/POST request to send sms** field:

```
GET /v3/send?username=${USER}&password=${PASSWORD}&msgid=${UUID}&tel=${DESTINATION}&msg=${TEXT}&campaignid=378404
HTTP/1.1
Host:${HOST}:${PORT}
User-Agent:firefox
Connection:close
```

Where:

- **GET** Represents the type of method used (GET/POST).
- **msgid** Represents the message number and must be a unique ID.
- **tel** Represents the recipients phone number.
- **msg** Represents the message text.
- **campaignid** Represents the parameter specific to the broker, defines your company ID and is specified in the account settings.
- **HTTP/1.1** Represents the HTTP protocol version.
- **Host, User-Agent, Connection** Represents the header parameters that are added to the request.

Note: It is important to set the HTTP request line breaks correctly. The requests body should be on one line. Although there are automatic line breaks, all new lines must be created using the **Enter** key.

For example, the following is one line and at the end of the line press the **Enter** key:

```
GET /v3/send?username=${USER}&password=${PASSWORD}&msgid=${UUID}&tel=${DESTINATION}&msg=${TEXT}&campaignid=378404
HTTP/1.1
Host:${HOST}:${PORT}
User-Agent:firefox
Connection:close
```

Brokers can use specific parameters in their request, see the brokers API documentation for more details about each parameter. You can use as a reference any of pre-configured message brokers.
Defining a new SMS broker

To add a new message broker, complete the following steps:

1. Log on to the PowerManage MMI console. On the MMI menu, go to
 Application configuration > Common > SMS Brokers > Add a new broker.
2. In the SMS Brokers types field, type Templated.
3. In the SMS Brokers name field, type the broker’s name.
4. In the SMS Broker sender field, type the broker’s phone number. This
 number is indicated to the client as the source sender’s number for all SMS
 messages sent by the server.
5. In the SMS Broker login and SMS Broker password fields, type the user
 name and password respectively.
6. In the SMS Broker host field, type the hostname of the broker.
7. In the SMS Broker port field, type the port number that is used by the
 broker.
8. In the Template of GET/POST request to send sms field, enter the brokers
 request to send outgoing SMS messages. See Defining a request for details.
9. Select Add broker.

10. On the MMI menu, go to Application configuration > Interactive > End
 user notification > Messaging settings.
11. Select the SMS enable checkbox.
12. In the Send SMS via field, select the new broker’s name.
13. Select **Apply changes**.

Figure -19 MMI console – Messaging setup
Configuring HAProxy load balancing software

HaProxy (High Availability Proxy) is an open source load balancer software that acts as fast proxy server and provides high availability for TCP and HTTP based applications. It can be implemented and configured for both standalone and Geo redundancy systems. The PowerManage server uses HAProxy to decrypt SSL traffic. This provides better performance and a more stable and secure system.

The following tasks can be performed by the HAProxy server:

- Decrypts traffic from APP (REST request on 443 HTTPS port) and transmits it directly to PowerManage REST module (3333 HTTP port).
- In the case of a GEO redundancy configuration, the HAProxy checks which node is the master and based on this information REST requests are transmitted to the Master node.

Installing HAProxy

To install HAProxy software you must install Community Enterprise Operation System (CentOS) Linux on the server and configure the network. Then you must install the HAProxy software for PowerManage from an archive.

Installing and configuring CentOS 7

Install CentOS using a minimal or a full ISO image. For instructions and installation files, see the CentOS site at https://www.centos.org/download/.

To configure the network, you can use a graphical interface during the installation or after the installation you can configure from the shell command line.

To configure the network from the shell command line, enter the following commands:

```
$ nmcli d  # identifies all Ethernet cards installed on the server.
$ nmtui   # opens graphics terminal for network port configuration
```

The configuration file is saved to the directory:

```
/etc/sysconfig/network-scripts/eth_port
```

To configure the network edit the **eth_port** file manually.

After configuring the network, enter the following command to restart the network service:

```
$systemctl restart network
```

Installing HAProxy software

To install the HAProxy software you must download the PowerManage archived version PowerManageProxy_x.x.tar.gz to the CentOS machine.

Use the following command to unpack the archive to any directory, for example the /tmp directory:

```
$ tar -xzf PowerManageProxy_x.x.tar.gz -C
```